Smoothing Projected Gradient Method and Its Application to Stochastic Linear Complementarity Problems
نویسندگان
چکیده
A smoothing projected gradient (SPG) method is proposed for the minimization problem on a closed convex set, where the objective function is locally Lipschitz continuous but nonconvex, nondifferentiable. We show that any accumulation point generated by the SPG method is a stationary point associated with the smoothing function used in the method, which is a Clarke stationary point in many applications. We apply the SPG method to the stochastic linear complementarity problem (SLCP) and image restoration problems. We study the stationary point defined by the directional derivative and provide necessary and sufficient conditions for a local minimizer of the expected residual minimization (ERM) formulation of SLCP. Preliminary numerical experiments using the SPG method for solving randomly generated SLCP and image restoration problems of large sizes show that the SPG method is promising.
منابع مشابه
A New Smoothing Conjugate Gradient Method for Solving Nonlinear Nonsmooth Complementarity Problems
In this paper, by using the smoothing Fischer-Burmeister function, we present a new smoothing conjugate gradient method for solving the nonlinear nonsmooth complementarity problems. The line search which we used guarantees the descent of the method. Under suitable conditions, the new smoothing conjugate gradient method is proved globally convergent. Finally, preliminary numerical experiments sh...
متن کاملA truncated aggregate smoothing Newton method for minimax problems
Aggregate function is a useful smoothing function to the max-function of some smooth functions and has been used to solve minimax problems, linear and nonlinear programming, generalized complementarity problems, etc. The aggregate function is a single smooth but complicated function, its gradient and Hessian calculations are timeconsuming. In order to gain more efficient performance of aggregat...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملEfficient Numerical Methods for Pricing American Options Under Stochastic Volatility
Five numerical methods for pricing American put options under Heston’s stochastic volatility model are described and compared. The option prices are obtained as the solution of a two-dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M -matrices is proposed. The projected SOR, a projected ...
متن کاملStochastic Complementarity for Local Control of Discontinuous Dynamics
We present a method for smoothing discontinuous dynamics involving contact and friction, thereby facilitating the use of local optimization techniques for control. The method replaces the standard Linear Complementarity Problem with a Stochastic Linear Complementarity Problem. The resulting dynamics are continuously differentiable, and the resulting controllers are robust to disturbances. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2009